3.492 \(\int \frac{\left (c+d x+e x^2+f x^3\right ) \sqrt{a+b x^4}}{x^5} \, dx\)

Optimal. Leaf size=329 \[ -\frac{1}{12} \sqrt{a+b x^4} \left (\frac{3 c}{x^4}+\frac{4 d}{x^3}+\frac{6 e}{x^2}+\frac{12 f}{x}\right )-\frac{b c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{4 \sqrt{a}}+\frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (3 \sqrt{a} f+\sqrt{b} d\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{a} \sqrt{a+b x^4}}+\frac{1}{2} \sqrt{b} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+\frac{2 \sqrt{b} f x \sqrt{a+b x^4}}{\sqrt{a}+\sqrt{b} x^2}-\frac{2 \sqrt [4]{a} \sqrt [4]{b} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt{a+b x^4}} \]

[Out]

-(((3*c)/x^4 + (4*d)/x^3 + (6*e)/x^2 + (12*f)/x)*Sqrt[a + b*x^4])/12 + (2*Sqrt[b
]*f*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^2) + (Sqrt[b]*e*ArcTanh[(Sqrt[b]*x^2
)/Sqrt[a + b*x^4]])/2 - (b*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(4*Sqrt[a]) - (2*
a^(1/4)*b^(1/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^
2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/Sqrt[a + b*x^4] + (b^(1/4)*
(Sqrt[b]*d + 3*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sq
rt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(3*a^(1/4)*Sqrt[a +
 b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.596052, antiderivative size = 329, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 13, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.433 \[ -\frac{1}{12} \sqrt{a+b x^4} \left (\frac{3 c}{x^4}+\frac{4 d}{x^3}+\frac{6 e}{x^2}+\frac{12 f}{x}\right )-\frac{b c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{4 \sqrt{a}}+\frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (3 \sqrt{a} f+\sqrt{b} d\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{a} \sqrt{a+b x^4}}+\frac{1}{2} \sqrt{b} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+\frac{2 \sqrt{b} f x \sqrt{a+b x^4}}{\sqrt{a}+\sqrt{b} x^2}-\frac{2 \sqrt [4]{a} \sqrt [4]{b} f \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{\sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Int[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^5,x]

[Out]

-(((3*c)/x^4 + (4*d)/x^3 + (6*e)/x^2 + (12*f)/x)*Sqrt[a + b*x^4])/12 + (2*Sqrt[b
]*f*x*Sqrt[a + b*x^4])/(Sqrt[a] + Sqrt[b]*x^2) + (Sqrt[b]*e*ArcTanh[(Sqrt[b]*x^2
)/Sqrt[a + b*x^4]])/2 - (b*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(4*Sqrt[a]) - (2*
a^(1/4)*b^(1/4)*f*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^
2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/Sqrt[a + b*x^4] + (b^(1/4)*
(Sqrt[b]*d + 3*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sq
rt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(3*a^(1/4)*Sqrt[a +
 b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**5,x)

[Out]

Timed out

_______________________________________________________________________________________

Mathematica [C]  time = 3.39629, size = 267, normalized size = 0.81 \[ \frac{1}{12} \left (-\frac{\sqrt{a+b x^4} \left (3 c+4 d x+6 x^2 (e+2 f x)\right )}{x^4}-\frac{3 b c \tanh ^{-1}\left (\frac{\sqrt{a+b x^4}}{\sqrt{a}}\right )}{\sqrt{a}}-\frac{8 \sqrt{a} \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{\frac{b x^4}{a}+1} \left (\sqrt{b} d-3 i \sqrt{a} f\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{\sqrt{a+b x^4}}+6 \sqrt{b} e \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )-\frac{24 i a f \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{\sqrt{a+b x^4}}\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[((c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4])/x^5,x]

[Out]

(-((Sqrt[a + b*x^4]*(3*c + 4*d*x + 6*x^2*(e + 2*f*x)))/x^4) + 6*Sqrt[b]*e*ArcTan
h[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]] - (3*b*c*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/Sqrt
[a] - ((24*I)*a*Sqrt[(I*Sqrt[b])/Sqrt[a]]*f*Sqrt[1 + (b*x^4)/a]*EllipticE[I*ArcS
inh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/Sqrt[a + b*x^4] - (8*Sqrt[a]*Sqrt[(I*Sqrt
[b])/Sqrt[a]]*(Sqrt[b]*d - (3*I)*Sqrt[a]*f)*Sqrt[1 + (b*x^4)/a]*EllipticF[I*ArcS
inh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/Sqrt[a + b*x^4])/12

_______________________________________________________________________________________

Maple [C]  time = 0.02, size = 385, normalized size = 1.2 \[ -{\frac{c}{4\,a{x}^{4}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}-{\frac{bc}{4}\ln \left ({\frac{1}{{x}^{2}} \left ( 2\,a+2\,\sqrt{a}\sqrt{b{x}^{4}+a} \right ) } \right ){\frac{1}{\sqrt{a}}}}+{\frac{bc}{4\,a}\sqrt{b{x}^{4}+a}}-{\frac{d}{3\,{x}^{3}}\sqrt{b{x}^{4}+a}}+{\frac{2\,bd}{3}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{e}{2\,a{x}^{2}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}+{\frac{be{x}^{2}}{2\,a}\sqrt{b{x}^{4}+a}}+{\frac{e}{2}\sqrt{b}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ) }-{\frac{f}{x}\sqrt{b{x}^{4}+a}}+{2\,if\sqrt{a}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{2\,if\sqrt{a}\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2)/x^5,x)

[Out]

-1/4*c/a/x^4*(b*x^4+a)^(3/2)-1/4*c*b/a^(1/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/
x^2)+1/4*c*b/a*(b*x^4+a)^(1/2)-1/3*d/x^3*(b*x^4+a)^(1/2)+2/3*d*b/(I/a^(1/2)*b^(1
/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^
4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-1/2*e/a/x^2*(b*x^4+a)^(3/2)+
1/2*e*b/a*x^2*(b*x^4+a)^(1/2)+1/2*e*b^(1/2)*ln(b^(1/2)*x^2+(b*x^4+a)^(1/2))-f/x*
(b*x^4+a)^(1/2)+2*I*f*b^(1/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(
1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a
^(1/2)*b^(1/2))^(1/2),I)-2*I*f*b^(1/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^
(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*Ellipti
cE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{5}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^5,x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^5, x)

_______________________________________________________________________________________

Sympy [A]  time = 8.31159, size = 211, normalized size = 0.64 \[ \frac{\sqrt{a} d \Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, - \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac{1}{4}\right )} - \frac{\sqrt{a} e}{2 x^{2} \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{\sqrt{a} f \Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - \frac{1}{4} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac{3}{4}\right )} - \frac{\sqrt{b} c \sqrt{\frac{a}{b x^{4}} + 1}}{4 x^{2}} + \frac{\sqrt{b} e \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{2} - \frac{b c \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{2}} \right )}}{4 \sqrt{a}} - \frac{b e x^{2}}{2 \sqrt{a} \sqrt{1 + \frac{b x^{4}}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2)/x**5,x)

[Out]

sqrt(a)*d*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), b*x**4*exp_polar(I*pi)/a)/(4*x
**3*gamma(1/4)) - sqrt(a)*e/(2*x**2*sqrt(1 + b*x**4/a)) + sqrt(a)*f*gamma(-1/4)*
hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x*gamma(3/4)) - sqrt(b)
*c*sqrt(a/(b*x**4) + 1)/(4*x**2) + sqrt(b)*e*asinh(sqrt(b)*x**2/sqrt(a))/2 - b*c
*asinh(sqrt(a)/(sqrt(b)*x**2))/(4*sqrt(a)) - b*e*x**2/(2*sqrt(a)*sqrt(1 + b*x**4
/a))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{5}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^5,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)/x^5, x)